Fransi Storm, G. M. \& Ti'instra, F. (1986). J. Appl. Crust. Submitted.

Gofde, R. De (1986). To be published.
JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794, revised June 1970. Oak Ridge National Laboratory, Tennessee.

Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. W. \& Hall, S. R. (1972). The XRAY72 system. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Wang, J. L., Berkovitch-Yellin, Z. \& Leiserowitz, L. (1985). Acta Cryst. B41, 341-348.

Acta Cryst. (1986). B42, 497-515

The Refined Structure of Beef Liver Catalase at $\mathbf{2} \cdot \mathbf{5}$ £ Resolution

By Ignacio Fita,* Abelardo M. Silva, † Mathur R. N. Murthy \ddagger and Michael G. Rossmann Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA

(Received 23 September 1985; accepted 3 April 1986)

Abstract

The crystal structure of beef liver catalase [Murthy, Reid, Sicignano, Tanaka \& Rossmann (1981). J. Mol. Biol. 152, 465-499] has now been refined by a restrained parameter least-squares method [Konnert \& Hendrickson (1980). Acta Cryst. A36, 344-350] with respect to $2.5 \AA$ data. Some extra density was discovered during the refinement process. This was interpreted in terms of a bound NADP molecule [Kirkman \& Gaetani (1984). Proc. Natl Acad. Sci. USA, 81, 4343-4348; Fita \& Rossmann (1985). Proc. Natl Acad. Sci. USA, 82, 1604-1608]. When the noncrystallographic symmetry was imposed as a constraint, the R factor was reduced to $21 \cdot 2 \%$. However, refinement of the two crystallographic independent subunits gave a final R factor of $19 \cdot 1 \%$. The refined coordinates have been re-analyzed for main-chain and side-chain hydrogen bonding, charge distribution, secondary structural element interactions, subunit contacts and molecular packing. The fractional accessibility and the temperature-factor variation are also discussed. The oligomerization process is considered in terms of the unusual quaternary structure. The organization of the heme channel and its relation to the enzyme's catalytic properties have been discussed elsewhere [Fita \& Rossmann (1985). J. Mol. Biol. 185, 21-37].

Introduction

The biological function of catalase (EC 1.11.1.6) is still unclear, as is also the in vivo role of the bound

[^0]NADP molecule found in some mammalian catalases (Kirkman \& Gaetani, 1984; Fita \& Rossmann, 1985a) and the extra 'flavodoxin-like' domain in fungal catalases (Vainshtein, Melik-Adamyan, Barynin, Vagin \& Grebenko, 1981). However, the presence of catalase in most aerobic organisms has been related to the protection of cells from the toxic effects of small peroxides ($c f$. Deisseroth \& Dounce, 1970; Schonbaum \& Chance, 1976).
The structure of beef liver catalase (BLC) had been determined (Reid, Murthy, Sicignano, Tanaka, Musick \& Rossmann, 1981; Murthy, Reid, Sicignano, Tanaka \& Rossmann, 1981) and bears a close resemblance to fungal catalase (Vainshtein et al., 1981). In this paper we describe the refinement of the atomic parameters and analyze the molecular structure. Elsewhere (Fita \& Rossmann, 1985b) we have discussed the heme environment in relation to the catalytic properties of the enzyme.

Refinement of the structure

(a) Crystal and molecular data

The molecular weight of BLC is 235000 . There are four polypeptide chains per molecule, each with one heme group and one NADP moiety (Kirkman \& Gaetani, 1984; Fita \& Rossmann, 1985a). Each subunit has usually 506 amino acids, although some beef liver extracts have been reported with 10 to 15 additional residues (Schroeder, Shelton, Shelton, Robberson, Apell, Fang \& Bonaventura, 1982; Schroeder, Shelton, Shelton, Apell, Evans, Bonaventura \& Fang, 1982). The crystals are trigonal, have space group $P 3_{2} 21$ with $a=142.0$ and $c=103.7 \AA$ and were first reported by Eventoff, Tanaka \& Rossmann (1976). The molecule is positioned on a crystallographic diad with two subunits per crystallographic asymmetric unit. For most of the refinement, the coordinates were
(C) 1986 International Union of Crystallography
constrained by the previously determined (Murthy et al., 1981) non-crystallographic symmetry relating the two crystallographically independent subunits. Only in the final stages of refinement was this constraint removed to permit entirely independent adjustments of the atomic parameters in the two subunits.
The three mutually perpendicular molecular diads serve to define the right-handed P, Q, R coordinate system. The Q axis is coincident with the crystallographic twofold axis at $z=\frac{5}{6} c$. The R axis is very roughly parallel to c, or more precisely there is an angle of $\theta=-13.65^{\circ}$ between R and c. The relationship between the molecular and crystallographic axes is given by:

$$
\begin{align*}
& P=a \frac{\sqrt{3}}{2} \cos \theta x+0 y-c \sin \theta\left(z-\frac{5}{6}\right) \\
& Q=-\frac{a}{2} x+b\left(y-y_{0}\right)+0 z \tag{1}\\
& R=a \frac{\sqrt{3}}{2} \sin \theta x+0 y+c \cos \theta\left(z-\frac{5}{6}\right),
\end{align*}
$$

where $\left(0, y_{0}, 0\right)$ is the position of the molecular center in fractional coordinates. Alternatively, the relationship between the two non-crystallographic asymmetric units can be expressed as:

$$
\begin{align*}
x^{\prime}= & -\cos 2 \theta x+0 y+\frac{2 c \sin 2 \theta}{\sqrt{3} a} z-\left[\frac{5 c}{3 \sqrt{3} a} \sin 2 \theta\right] \\
y^{\prime}= & \frac{1-\cos 2 \theta}{2} x-y+\frac{c}{\sqrt{3} a} \sin 2 \theta z \\
& +\left[2 y_{0}-\frac{5 c}{6 \sqrt{3} a} \sin 2 \theta\right] \tag{2}\\
z^{\prime}= & \frac{a}{\sqrt{3} c} \sin 2 \theta x+0 y+\cos 2 \theta z+\left[\frac{5}{6}(1-\cos 2 \theta)\right] .
\end{align*}
$$

Equations (2) were used to constrain the refinement to the non-crystallographic symmetry. The reference subunit, S_{1}, is defined as having all positive coordinates for its heme Fe position. Subunit S_{2} is related to S_{1} by the R axis.

The X-ray diffraction data were collected with oscillation photographs as described by Murthy et al. (1981). The final native data extended to $2.5 \AA$ resolution. Although 88% of the data were observed with amplitudes greater than one estimated standard error, yet only 67% of the data was found to be similarly significant in the $2 \cdot 58-2 \cdot 50 \AA$ resolution shell. The overall R factor was 10.3%, where R factor $=\sum_{h} \sum_{i}\left|\left(\bar{I}_{h}-I_{h i}\right)\right| / \sum_{h} \sum_{i} \bar{I}_{h}$ (\bar{I}_{h} is the mean of i observations $I_{h i}$).

(b) The starting model

The original multiple-isomorphous-replacement phases were obtained from the native and four heavy-
atom-derivative data sets. The map was then subjected to ten cycles of molecular-replacement density averaging. The resultant electron density, averaged over the two crystallographically independent molecular subunits, was interpreted with respect to the amino acid sequence in a Richards optical comparator (Murthy et al., 1981). This model was used to measure C_{α} coordinates and details of some selected residues. These coordinates were the starting point of the work reported here.

The averaged electron density map, calculated with respect to the molecular P, Q, R system, was then displayed in the MMS-X computer-graphics system (Barry, Bosshard, Ellis \& Marshall, 1975) with A. Jones's (1978) FRODO program. The initial model building experienced some difficulties in a few regions. In particular, the amino-terminal (1-4) and carboxy-terminal (501-506) residues were not visible in the map. Apart from residues 3 and 4, these residues remained undetermined throughout the refinement.

(c) Refinement strategy

The molecular coordinates were transferred to the crystal system and used to construct an electron density map. Each atom was represented as a sum of two Gaussians (Forsyth \& Wells, 1959; Agarwal, 1978) modified by individual temperature factors and an artificial overall temperature factor ($25 \AA^{2}$) related to resolution and grid sampling (Ten Eyck, 1977). The electron density generated by any given atom was limited to a radius of $3 \AA$. No density was placed in the solvent region of the crystal cell. The resultant electron density was back-transformed with a $P 3_{2}$ specific fast Fourier program (Ten Eyck, 1973; E. Dodson, private communication) to give calculated structure factors, F_{c} These structure factors were placed on a relative scale to the observed amplitudes F_{o} by deriving independent linear scale factors ($\sum F_{o} F_{c} / \sum F_{c}^{2}$) within 15 spherical shells of equal volume. Actual scale factors were determined by interpolation between the mean value for each shell. The scaled values were used to compute ($2 F_{o}-F_{c}$) and ($F_{o}-F_{c}$) difference maps without any figure of merit weighting. The maps were twofold averaged and skewed (Johnson, 1978) into the molecular P, Q, R system for display in the MMS-X computer-graphics system. The ($2 F_{o}-F_{c}$) maps were used for checking and correcting the current model, while the ($F_{o}-F_{c}$) map was used primarily for finding major errors and solvent molecules.

After all necessary atomic adjustments had been made by use of the FRODO program, the coordinates were returned from the MMS-X graphics system to the Purdue University Computer system by way of a 9800 baud telephone line. The atomic parameters were then subjected to least-squares refinement. The least-squares program had been written and con-
ceived by Hendrickson \& Konnert (1980) and adapted for vector processing on a Cyber 205 computer. This procedure improves the agreement between $\left|F_{o}\right|$ and $\left|F_{c}\right|$ amplitudes while simultaneously maintaining reasonable stereochemical features. The objective is to minimize an observational function by setting up a set of normal equations in terms of the atomic parameter shifts.

The stereochemical restraints applied to the model included interatomic distances and angles, planarity, chiral volume, non-bonded contacts and torsion angles. The general form of the contribution to the residual for a given type of restraint is

$$
\sum_{i}\left[w\left(d_{T}-d_{M}\right) / \sigma_{T}\right]^{2}
$$

where the sum is taken over all restraint parameters of a given type. The weight for each term in the sum has the form w / σ_{T}, where σ_{T} is the target standard deviation for a particular restraint and w is the weight given to that term in the residual; d_{T} is the target value for the restraint and d_{M} is its actual value derived from the model. The values of w, σ_{T} and R are given in Table 1 for the final stages of the refinement.

Two main modifications were introduced to the Hendrickson-Konnert refinement package. The first is the use of non-crystallographic symmetry as a constraint and the second is the vectorization of the structure factor and structure factor derivative calculations. In its original version, the program imposed non-crystallographic symmetry as a restraint by minimizing $\sum\left(x-[\mathrm{C}] x^{\prime}\right)^{2}$, where x and x^{\prime} are noncrystallographically related position vectors of atoms and [C] is the known non-crystallographic operator. This means that, while the number of observational equations would have increased, the number of parameters would not have decreased. By imposing the non-crystallographic symmetry as an algebraic constraint, the number of independent atomic parameters is halved (Rossmann, 1976).

The specific configuration of the Purdue University Cyber 205 computer at the time of this work included one vector processor, one scaler processor, $10^{6} 64$-bit words of main memory and 3×10^{9} bytes of disk space. The special feature of such a computer is the vectorprocessing option. This permits the same operation to be performed almost simultaneously on each set of paired elements in two vectors. The operation on the second pair of elements can commence very shortly after the operation on the first pair has started and so forth. Hence, the multiplication (say) of two vectors can be done in only a little extra time than the multiplication of two individual numbers. The calculation of structure factors and their derivatives was, therefore, performed by computing all atomic contributions for a given reflection at once. That is, the x, v and z coordinates of all atoms in the unit

Table 1. Refinement restraints

Model:	One-subunit refinement	Two-subunit refinement
Distances		
ω	1.5	1.4
No.*	11531	23062
$>4 \sigma \dagger$	17	60
$\sigma_{1}(0.030)$	0.027	0.029
$\sigma_{2}(0.040)$	0.044	0.048
$\sigma_{3}(0.050)$	0.047	0.051
Chiral volume (\AA^{3})		
ω	$1 \cdot 3$	$1 \cdot 3$
No.	573	1146
>3 σ	5	18
$\sigma(0.150)$	0.180	0.182
Planes (\AA)		
${ }^{\omega}$	1.0	1.0
No.	723	1446
$>2 \sigma$	8	14
$\sigma(0.020)$	0.017	0.017
Non-bonded contacts (\AA)		
ω	1.0	1.0
$\sigma_{1}(0.500)$	0.223	0.232
$\sigma_{2}(0.500)$	0.258	0.279
$\sigma_{3}(0.500)$	0.233	0.249
Torsion angles (${ }^{\circ}$)		
ω	$1 \cdot 3$	$1 \cdot 3$
No.	1285	2570
$\sigma_{1}(3 \cdot 0)$	$5 \cdot 1$	6.9
$\sigma_{2}(15 \cdot 0)$	23.5	24.0
$\sigma_{3}(20.0)$	35.0	34.5
Thermal factors (\AA^{2})		
ω	1.0	1.0
$\sigma_{1}(1.0)$	1.34	$1 \cdot 13$
$\sigma_{2}(1.0)$	1.38	1.14
$\sigma_{3}(1.5)$	$2 \cdot 11$	1.81
$\sigma_{4}(1.5)$	2.23	1.84
R.m.s. shifts (\AA)	0.012	0.015
\boldsymbol{R} (\%)	21.2	19.1
No. of reflections	33255	33255
Resolution (\AA)	8.5-2.5	8.5-2.5

Parenthetic values for the σ values show target values.
Distances: σ_{t} is the r.m.s. deviation (\AA) for bond lengths, between atoms i and $i+1$, from their idealized values
σ_{2} is the r.m.s. deviation (\AA) for bond-angle distances, between atoms i and $i+2$, from their idealized values.
σ_{3} is the r.m.s. deviation (\AA) in planar groups, between atoms i and $i+3$, from their idealized values.
Planes: σ is the r.m.s. deviation (\AA) from the mean plane
Chiral volume: σ is the r.m.s. deviation (\AA^{3}) from the idealized volume inscribed by the bonded atoms.
Non-bonded contacts: σ_{1} is the r.m.s. deviation (\AA) of single torsion contacts between atoms i and $i+3$.
σ_{2} is the r.m.s. deviation (\AA) of multiple torsion contacts between atoms i and $j>i+3$. σ_{3} is the r.m.s. deviation (\AA) of possible H bonds.
Torsion angles: σ_{1} is the e.m.s. deviation (${ }^{\circ}$) from planar ($0^{\circ}, 180^{\circ}$) conformations. σ_{2} is the r.m.s. deviation $\left({ }^{\circ}\right)$ from staggered $\left(\pm 60^{\circ}, 180^{\circ}\right)$ conformations. σ_{3} is the r.m.s. deviation $\left({ }^{\circ}\right)$ from orthonormal ($\pm 90^{\circ}$) conformations. Thermal factors: σ_{1} is the r.m.s. deviation $\left(\AA^{2}\right)$ for main-chain, bonded (1-2) neighbors. σ_{2} is the r.m.s. deviation (\AA^{2}) for side-chain, bonded (1-2) neighbors. σ_{3} is the r.m.s. deviation (\AA^{2}) for main-chain, (1-3) neighbors.
σ_{4} is the r.m.s. deviation $\left(\AA^{2}\right)$ for side-chain, (1-3) neighbors.

* The number of distances, planes, etc., which were restrained.
$\dagger>n \sigma$ indicates the number of restraints which remained larger than $n \sigma_{T}$ (target) at the end of the refinement stage.
cell were initially expanded into three vectors. The length of each vector was about 50000 elements. Similarly, the cosine and sine tables were placed into vectors and accessed by a special instruction which allows the gathering of all required values in the look-up table. All multiplications of scattering factors were also vectorized. In this manner the execution time was reduced by approximately a factor of 10 when compared with the unvectorized version of the program.

Table 2. Progress of the refinement

Cycle number (inclusive)	Atoms	Residues	Water molecules	Parameters refined*	Resolution range (\AA)	Comments
1-4	4032	(5-500) Heme	-	AYZ	10.0-3.0	Initial model from FRODO
5-7	4032	(5-500) Heme	-	$X Y Z$	5.0-2.5	
8-11	4032	(5-500) Heme	-	$X Y Z B$	5.0-2.5	
12-14	4107	(5-500) Heme	75	XYZB	7.0-2.5	($\left.2 F_{o}-F_{c}\right) \alpha_{c}$ averaged
15-17	4107	(5-500) Heme	75	$X Y Z B$	5.0.2.5	
18-20	4101	(5-500) Heme	69	XYZ	8.5-2.5	
21-29	4131	(2-500) Heme	75	$X Y Z B$	8.5-2	($\left.2 F_{o}-F_{c}\right) \alpha_{c}$ unaveraged; Pro 405 as cis; 17-23, 289-293 omitted from one subunit
						$\left(2 F_{o}-F_{c}\right) \alpha_{c}$ and $\left(F_{o}-F_{c}\right) \alpha_{c}$ averaged; checked extra density
30-34	4145	(2-500) Heme polyA peptide	69	$X Y Z B$	8.5-2.5	
35,38	4097	(4-500) Heme	54	$X Y Z B$	8.5-2.5	
39-42	4148	(3-500) Heme AVHTYA	52	XYZB	8.5-2.5	$\left(2 F_{o}-F_{c}\right) \alpha_{c}$ unaveraged
43-51	4145	(3-500) Heme	49	$X Y Z B$	8.5-2.5	
52-57	4150	(3-500) Heme	54	XYZB	8.5-2.5	$\left(F_{o}-F_{c}\right) \alpha_{c}$ averaged
58-69	4150	(3-500) Heme	54	$X Y Z B$	8.5-2.5	($\left.F_{o}-F_{c}\right) \alpha_{c}$ with and without averaging
70-76	8300	(3-500) Heme AVHTYA 2 subunits	108	$X Y Z B$	8.5-2.5	$\left(F_{0}-F_{c}\right) \alpha_{c}$ with and without averaging
						($2 F_{o}-F_{c}$) α_{c} and $\left(F_{o}-F_{c}\right) \alpha_{c}$ with and without averaging
77-83	4149	$\begin{aligned} & (3-500) \text { Heme } \\ & \text { NADP } \end{aligned}$	50	XYZB	8.5-2.5	
84-93	8296	(3-500) Heme NADP 2 subunits	98	XYZB	8.5-2.5	$\left(2 F_{o}-F_{c}\right) \alpha_{c}$ averaged
						$\left(2 F_{n}-F_{c}\right) \alpha_{c}$ without averaging

${ }^{*} X, Y, Z$ refer to molecular coordinates, B refers to temperature factors.

The Cyber 205 computer was not available when the refinement of BLC was initiated. Hence, the realspace transformation described above was used for structure factor calculations. This would not have been necessary had the Cyber been available. Thus, in the end, the reciprocal-space method of structure factor calculation was used in the least-squares procedure, whereas the real-space transformation was used in the construction of difference maps.

(d) Refinement progress

The initial R factor for the model that had been fitted to the molecular-replacement map in the MMSX graphics system by means of the $F R O D O$ program was 37.9% for data between resolution limits of 10 to $3 \AA$. The subsequent progress of refinement is detailed in Table 2. Explicit hydrogen bonds were used as restraints during the first 11 cycles while weighting heavily the X-ray contribution to the normal equations. An overall temperature factor was used only in the first seven cycles of refinement. Discontinuities in the overall R-factor convergence (Fig. 1) correspond to the incorporation of additional data into the least-squares process and the reexamination of the current model in the MMS-X system. Water molecules were introduced after the 11th cycle and refined with full occupancies. These
were placed only where there was good density and no steric overcrowding. Those water molecules which exhibited shifts greater than $2 \AA$ from their initial positions or refined to temperature factors larger than $50 \AA^{2}$ were removed. No restraints were put on water molecules, but short contacts were not permitted. Proline 405 was changed to a cis conformation after the 20th cycle. Residues 17-23 and 289-293 were omitted for one subunit only in the difference map calculations after cycle 20 in order to check on their conformation since they previously had poor density. The weight of the stereochemical constraints was

Fig. 1. R-factor variation during the process of refinement.

Table 3. Alignment of carboxy-terminal peptides

The generally accepted one-letter amino acid code used here is: $A=A l a, C=C y s$, $\mathrm{D}=$ Asp, $\mathrm{E}=\mathrm{Glu}, \mathrm{F}=$ Phe, $\mathrm{G}=\mathrm{Gly}, \mathrm{H}=$ His, $\mathrm{l}=\mathrm{Ihe}, \mathrm{K}=\mathrm{Lys}, \mathrm{L}=\mathrm{Leu}, \mathrm{M}=$ Met, $\mathrm{N}=$ Asn, $P=$ Pro, $Q=G \ln , R=$ Arg, $S=\operatorname{Ser}, T=T h r, V=V a l, W=$ Trp, $Y=T y r$.

BLC (Schroeder)

BLC (X-ray)
BEC (Schroeder)
HEC (Schroeder)

$$
-N-A-E-K-P-K-N-A
$$

$(F-V-E-S-E-S-H)(I, H, T)+(V-A-U)$
PVC (Vainshtein, \qquad

- - - $-R-A-A-R-R-R-A-A-A-A-R-A-A-A-A-$

Beef liver catalase (BLC) crystals show additional electron density. The latter was initially interpreted as the above alignment of peptides Th 10 and Th 11 found in occasional preparations of BLC (Schroeder, Shelton, Shelton, Robberson et al, 1982). Similar peptides are invariably found in beef erythrocyte catalase (BEC) which shows no other differences to BLC. Similar peptides are also found in human erythrocyte catalase (HEC) although the above alignment shows a conflict of residues in positions 506 and 507. The carboxy-terminal extension to the flavodoxin-like domain in Penicillium vitale catalase (PVC) showed spatial alignment of residues 512-517 (BLC) with 503-508 (PVC). Hence, the initial interpretation of the extra density in BLC was in terms of the hexapeptide $\mathrm{H}-\mathrm{V}-\mathrm{H}-\mathrm{T}-\mathrm{Y}-\mathrm{A}$. However, after the refinement had already been terminated, this density was reinterpreted in terms of the NADP recently reported (Kirkman \& Gaetani. 1984) to be associated with BLC.
increased after cycle 29 so that the contribution per parameter of the X-ray data was roughly equal to the contribution per constraint in the overall sum that was to be minimized.

The constraint between the two independent crystallographic subunits was removed in the final cycles (70-76) giving a further significant decrease in R factor. The refinement of residues 499 and 500 in subunit 2 was then found to be unstable. Hence, atoms C_{γ} and the carbonyl O of Tyr 499 as well as C_{γ} of Asn 500 were fixed in subunit 2 . This cured the problem

A significant amount of uninterpreted electron density was assumed to be a carboxy-terminal extension after cycle 52 . The density corresponded to some of the amino acids of peptides Th 10 and Th 11 found by Schroeder, Shelton, Shelton, Robberson et al. (1982) in occasional preparations and assigned by them to the carboxy-terminal extension of bovine and human erythrocyte catalase (Table 3). Furthermore, the extra density in BLC was very close to the superimposed polypeptide chain of Penicillium vitale catalase (PVC) corresponding to the hinge linking the final flavodoxin-like domain (absent in beef liver catalase). These additional residues 512-517 were included in refinements after cycle 38. The sequence was determined by homology with human and erythrocyte catalase and by inspection of the X-ray map. After the refinement was essentially ter-

Fig. 2. Fit of erroneous hexapeptide (a) to the extra density compared to the correct fit of NADP (b).
minated, it was reported that BLC contained 4 molecules of tightly bound NADP (Kirkman \& Gaetani, 1984). Reinspection of the extra density clearly showed a far better fit of NADP to the density, even after refinement with respect to the hexapeptide. The correspondence of fit can be described as:

$$
\begin{array}{ll}
\text { hexapeptide: } & \text { HVHT YA } \\
\text { NADP: } & \text { NRPPRAP }
\end{array}
$$

where the imidazole of the second histidine occupied only very low and poor density (Fig. 2). The NADP structure was refined in cycles 77 to 87 using the non-crystallographic constraint and starting with the averaged coordinates found at the end of cycle 69.

Final plots of the R factor expressed as a function of the resolution for the final models are shown in Fig. 3. A plot of the C_{α} atoms in one subunit is given in Fig. 4 which is compared with a diagrammatic view of the molecule. Final coordinates of both subunits relative to the molecular P, Q, R axes have been deposited with the Brookhaven Protein Data Bank as have also the structure amplitudes.*

Convergence and accuracy

Although it is difficult to assess that convergence has been reached in the refinement process, the r.m.s.

[^1]

Fig. 3. R factor as a function of resolution for the final models.

Table 4. Variation between atomic parameters of subunits 1 and 2

	Distance (\AA)	Temperature factor $\left(\AA^{2}\right)$
Mean (r.m.s.)		
All atoms	0.31	5.0
Main chain only	0.21	4.0
Side chain only	0.37	$5 \cdot 3$
Maximum		
Position		
Side chain: Glu 453	$1 \cdot 20$	-
Main chain: Arg 421	0.46	-
Temperature		
Side chain: Glu 172	-	14.1
Main chain: Arg 319	-	9.4

Table 5. R.m.s. deviation of atoms in residues involved in molecular contacts, corresponding to different environments in the two crystallographically independent molecules

	Main chain		Side chain	
	Position (\AA)	Temperature factor (\AA^{2})	Position (\AA)	Temperature factor (\AA^{2})
Pto 45	$0 \cdot 18$	$2 \cdot 3$	0.38*	$4 \cdot 3$
Arg 46	0.17	1.3	$0 \cdot 32$	$2 \cdot 1$
Glu 85	0.28*	$5 \cdot 1 *$	$0 \cdot 40$ *	$9 \cdot 0$ *
Val 86	$0 \cdot 22^{*}$	$1 \cdot 1$	0.27	1.3
Thr 87	$0.23 *$	$1 \cdot 1$	$0 \cdot 37$	2.7
His 88	0.37*	$6.3 *$	0.23	6.6*
His 101	$0 \cdot 18$	3.8	0.35	1.6
lle 102	$0.23 *$	$5 \cdot 0^{*}$	0.41*	4.0
Gly 103	$0 \cdot 20$	$4 \cdot 6$	-	-
Arg 105	0.15	9.0*	0.29	11-2*
Asp 238	0.33*	2.8	0.33	6.6*
Tyr 273	$0 \cdot 34 *$	$2 \cdot 6$	0.34	$3 \cdot 0$
Ser 275	$0 \cdot 11$	$2 \cdot 2$	0.22	$1 \cdot 3$
Thr 277	0.12	8.0*	0.13	$10 \cdot 1$ *
Tyr 279	0.14	7.5*	0.24	$10 \cdot 2^{\text {F }}$
Glu 289	0.17	1.9	0.29	$3 \cdot 0$
Ile 290	0.17	0.56	0.48*	$1 \cdot 1$
Pro 292	0.25*	0.76	0.43*	0.4
Lys 314	0.20	7.6*	0.45*	11.5*
Arg 379	$0 \cdot 15$	$6 \cdot 1{ }^{*}$	0.24	4.9
Arg 421	0.46 *	$1 \cdot 1$	0.71 *	1.4
His 423	0.26*	$1 \cdot 5$	0.53*	$2 \cdot 7$
Asp 427	$0 \cdot 15$	4.2*	0.29	$4 \cdot 5$
Gln 429	0.13	$2 \cdot 8$	0.55*	$3 \cdot 0$
Phe 43I	0.12	$2 \cdot 6$	0.38*	$6 \cdot 5^{*}$
Asn 432	$0 \cdot 12$	4.5*	0.53*	$4 \cdot 6$

shifts of atoms at the end of cycle 76 were only $0.018 \AA$ and the r.m.s. thermal adjustments were $0.37 \AA^{2}$. Such relatively small values do not assure that all parts of the structure have the correct conformation, but only that the present structure has been refined to a minimum, given the current weight of the conformational restraints and imposition of non-crystallographic constraints.

No easy method is available for determining the diagonal terms of the inverted matrix representing the normal equations of the least-squares procedure. Hence, it is not easily possible to determine a direct estimate of the errors. However, a maximum limit on the errors can be assessed by observing the difference between the independently refined subunits (Table 4). The larger positional differences are mostly associated with surface residues that encounter different external environments (Table 5). Thus, an outside error limit of $0.21 \AA$ for main-chain and $0.37 \AA$ for
side-chain atoms (Table 4) would seem to be very reasonable estimates.

The final ($2 F_{o}-F_{c}$) averaged map is compared with the starting map [multiple isomorphous replacement (MIR) improved by cyclic molecular replacement averaging] in Fig. 5. The poorest parts in the final electron density map are: (i) the amino-terminal (1-2) and carboxy-terminal (501-506) parts of the molecule where some residues could not be found even in the final map; (ii) the residues Ala 19-Ala 20-Glu 21Lys 22 where only the tracing of the main chain was visible in the final map; and (iii) Leu 450-Asn 451Glu 452 -Glu 453 where the main chain is quite well defined but most of the side chains are completely unobservable. These three regions correspond to the highest temperature factors in the molecule (see below).

Differences between the two subunits

Independent refinement of the two subunits permits:
(1) redetermination of the position and orientation of the molecule,
(2) assessment of the accuracy of the molecular 222 symmetry, and
(3) determination of the local influence of the different crystallographic environment on the two independent subunits.
However, refinement of the two subunits requires doubling the number of refinable parameters without increase of the number of observed amplitudes, although the number of observational equations restraining the molecular stereochemistry is also doubled. Hamilton $(1964,1965)$ suggested a test to determine whether the increase of parameters made a significant improvement in the agreement of the observational equations or was due entirely to the increase in the number of parameters. Application of the test (Table 6) shows that a significant improvement occurs in the two-subunit refinement if it is

Table 6. Hamilton significance test

	One-subunit refinement	Two-subunit refinement
No. of reflections	33255	33255
No. of parameters	16597	33185
No. of restraints	29551	59169
No. of data $=$ No. of reflections + No. of restraints	62806	92424
No. of degrees of freedom = No. of data - No. of parameters	46209	59239
R	21.2	19.1
$\left.R^{\prime} \Gamma=\left(\sum w \Delta F^{2} / \sum w F_{o}^{2}\right)^{1 / 2} \times 10^{2}\right]$	24.3	20.9

Therefore, R^{\prime} (one-subunit) $/ R^{\prime}($ two-subunit $)=1 \cdot 162$. Hamilton's test predicts a value of 1.02 for this ratio at the 5% significance level. Since the value of R^{\prime} (one-subunit)/ R^{\prime} (two-subunit) $>1 \cdot 02$, the two-subunit refinement should be a significant improvement. Note, however, that the R factor is dependent only on X-ray data, whereas the number of degrees of freedom was augmented by the stereochemical restraints.
assumed that the number of reflections (information) is to be augmented by the number of restraints. However, the test was not originally conceived for the combination of X-ray and stereochemical data. As Hamilton's test is not truly applicable in the case of a stereochemically restrained least-squares procedure, an alternative method has been applied which shows that the differences between the subunits may be significant and physically meaningful. The largest differences between the non-crystallographically related subunits may not be due to error in the determination of atomic positions, but be real differences due to differing molecular environments (Table 5).

All the C_{α} atoms were superimposed by a leastsquares process (Rao \& Rossmann, 1973; Rossmann \& Argos, 1975) with varying constraints (Table 7). In (1) of Table 7, it was assumed that the R axis was a true diad and intersected the molecular Q axis coincident with the crystallographic twofold axis, while solution (2) referred to the free superposition of the two R-related subunits. The results show that the size of Δ, κ and t (Table 7) were very close to $0.0 \AA, 180^{\circ}$ and $0.0 \AA$, respectively, making it reasonably certain

Fig. 4. Final C_{α} atoms in one subunit. (a) Stereoview.

Fig. 4 (cont.) (b) A diagrammatic view. The various secondary structural elements $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{13}$ and $\beta_{1}, \beta_{2}, \ldots, \beta_{9}$ are also identified.

Table 7. Analysis of the non-crystallographic symmetry operator along the R axis

		Present results	
Parameter	Murthy et al (1981)	(1)	(2)
$y_{0}(\AA)$	92.59	92.57	92.58
$\theta\left({ }^{\circ}\right)$	-13.65	-13.64	-13.64
$\Delta(\AA)$	0.000	0.000	0.004
$\kappa\left({ }^{\circ}\right)$	180.00	180.00	180.00
$f(\AA)$	0.00	0.00	0.015

y_{0} is the translation of the molecular center along the Q axis away from the 3_{2} axis. θ is the angle between the molecular R axis and crystallographic c-axis directions. Δ is the perpendicular distance of the R axis from the crystallographic diad. κ is the angle of rotation between the two subunits about R.
t is the translation between two R-axis-related subunits parallel to R. Solution (1) assumes exact molecular 222 symmetry.
Solution (2) permits free superposition of the R-related subunits.
that the molecule had exact 222 symmetry. The differences between the final values of y_{0} and θ between those used in cycles $0-69$ and those found subsequently were $0.02 \AA$ and 0.01°, too small to be significant.

(b)

Fig. 5. Comparison of (a) the final $\left(2 F_{o}-F_{c}\right)$ electron density map and (b) the starting MIR (improved by MR cycling) map in the region of the α_{7}^{\prime} helix.

Analysis of the refined molecule

(a) Conformation of main-chain angles

The main-chain torsional angles, φ, ψ and ω, are good indicators of the quality of the model. In their analysis; we have used the results of the averaged subunit refinement. Glycyl and non-glycyl residues were treated as two classes because of the greater freedom of the former. The Ramachandran plots for each class are shown in Fig. 6 which also show superimposed the conformational-energy map (Brant \& Schimmel, 1967).

Fifteen glycyl residues, representing 44% of all glycines, as opposed to only twelve other residues (3% of all such residues) have positive φ angles. Among the non-glycyl residues in the $0<\varphi<180^{\circ}$ range, there is the catalytically essential His 74 which is stabilized both by the interaction of its carbonyl oxygen with guanidinium of Arg 111 and by a hydrogen bond between its amino group and the carbonyl oxygen of Val 115. However, with the exception of Ser 216, none of the residues depart significantly from the minima shown on the conformational-energy map (Fig. 6). Ser 216 has similarly unusual conformational angles in PVC (B. K. Vainshtein \& W. R. MelikAdamyan, private communication), and plays a part in closing the β-barrel between strands β_{4} and β_{5}. There is a cluster of four residues ($388,391,396$ and 397) which also have positive φ values. These form part of the Q-axis-generated subunit contacts and have an unusually high sulfur content, the sequence being Met 391 -Cys 392 -Met $393-$ Met 394 .

The conformational angles ω were restrained toward the trans ($\omega=180^{\circ}$) position, except for Pro 405 which required a cis conformation. Table 8 lists those residues that differ by more than 10° from 180°. The largest discrepancy was 18° for the essential Tyr 357. Indeed, it is of some interest that many of the essential residues or those within the heme pocket (Table 8) have unusual conformational angles.

(b) Secondary structure

Although the general folding of BLC presented here (Fig. 4) does not differ from that presented previously (Murthy et al., 1981), there are many changes in detail. Particularly large changes relate to the main-chain hydrogen-bonding arrangements of β_{5} and β_{6}. Hydrogen bonds were assumed (Fig. 7) whenever the donor-acceptor distance was less than $3.5 \AA$ and the precursor-donor-acceptor angle was between 110 and 180° (Baker \& Hubbard, 1984). The main-chain hydrogen-bonding interactions between subunits are also shown in Fig. 7.

In BLC there are 14 helices ranging in size from one (α_{7}, and α_{8}) to $4 \frac{1}{2}$ turns (α_{11}, α_{12} and α_{13}). Helix α_{7} has longer than average hydrogen bonds (ranging from 2.7 to $3.3 \AA$) and had not been previously
characterized. Seven helices ($\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{5}, \alpha_{6}, \alpha_{11}$, α_{12}) are initiated or terminated by fragments of a 3_{10} helix. Helix α_{8} resembles more a π - than an α-helix (see hydrogen bonding in Fig. 7), a situation which also occurs in PVC (Vainshtein, Melik-Adamyan, Barynin, Vagin, Grebenko, Borisov, Bartels, Fita \& Rossmann, 1986).

The central feature of the catalase structure is an eight-stranded anti-parallel β-barrel. The first four strands ($\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$) are consecutive with each other and these have a fold similar to the second set of four strands ($\beta_{5}, \beta_{6}, \beta_{7}, \beta_{8}$). A similar β-barrel

Fig. 6. Ramachandran plots of the main-chain conformational angles superimposed on energy maps for (a) poly l-alanine and (b) for poly Gly.
topology has been observed in retinol binding protein (Newcomer, Jones, Åqvist, Sundelin, Eriksson, Rask \& Peterson, 1984). The continuity of the hydrogen bonding between strands within the β-barrel is interrupted only between strands β_{4} and β_{5} where there are only two well defined hydrogen bonds involving the essential Asn 147. Strand β_{s} itself is irregular due
to the insertion of residues 216-218 which are not involved in the β-sheet. This permits the aminoterminal part of β_{5} to bind simultaneously to its neighboring strands β_{4} and β_{6}, thus closing the β barrel. The first half of the β-barrel contains the essential residues in the distal side of the heme pocket (His 74, Asn 147, Phe 152, Phe 160), whereas the

Fig. 7. (a) Main-chain hydrogen-bonding network for one BLC subunit. Nomenclature of the secondary structural elements is also shown. The main-chain hydrogen bonding between subunits is indicated.
second half of the β-barrel functions primarily to bind the NADP moiety (Ser 200, Arg 202, Asp 212, Lys 236, His 304, Val 301, Trp 302, Tyr 214, His 234). The amino-end extension of the essential helix (containing the heme liganding residue Tyr 357) is anchored between β_{4} and β_{5}, on either half of the β-barrel, and forms three hydrogen bonds with β_{5}. The essential helix, which provides most of the
residues for the heme's proximal side, consists of two segments on either side of the essential Tyr 357.

The β-barrel contains four β-bulges (Richardson, Getzoff \& Richardson, 1978). Two of these are 'classic' (residues 278, 312, 313; and $81,318,319$) with one having a forked hydrogen bond in the X position, and the other with a glycine in position 2. The other two are ' Gl ' bends with glycine in position

Fig. 7 (cont.) (b) Accessibility of side chains. Side chains which have more than 15% of their surface area accessible to water in the tetramer are marked 0 and those with 2-15\% accessible area are marked D.

Table 8. Residues with the peptide bond departing from planarity by more than 10°

Residue	$\varphi\left({ }^{\circ}\right)$	$\psi\left({ }^{\circ}\right)$	$\omega\left({ }^{\circ}\right)$	Comment
Lys 22	81	$96<$	$\begin{aligned} & -167 \\ & -177 \end{aligned}$	Poor density
Phe 112	-101	$157<$	169 -177	
Thr 114	-99	$-163<$	$\begin{array}{r} 169 \\ -179 \end{array}$	In the vicinity of the heme pocket
Ala 116	-103	$-35<$	-168 178	
Asp 183	-52	$-67<$	$\begin{aligned} & 168 \\ & 179 \end{aligned}$	
Phe 197	-59	$-44<$	$\begin{array}{r} 169 \\ -171 \end{array}$	
Asn 294	-69	$108<$	$\begin{aligned} & 169 \\ & 176 \end{aligned}$	
Ala 326	-73	$-25<$	$\begin{array}{r} -169 \\ 180 \end{array}$	
Glu 343	-174	$143<$	$\begin{aligned} & -166 \\ & -179 \end{aligned}$	
Arg 353	-57	-36 $<$	$\begin{aligned} & 166 \\ & 173 \end{aligned}$	Essential residue
Tyr 357	-57	$-34<$	$\begin{aligned} & -162 \\ & -179 \end{aligned}$	Essential residue
Tyr 378	-81	$-25<$	$\begin{array}{r} -166 \\ -175 \end{array}$	
Asp 388	67	$-153<$	$\begin{aligned} & 165 \\ & 180 \end{aligned}$	
Met 394	-72	$-159<$	$\begin{array}{r} -169 \\ 171 \end{array}$	
Gly 398	65	$-147<$	$\begin{array}{r} 165 \\ -178 \end{array}$	
Phe 408	-136	$23<$	$\begin{array}{r} -167 \\ 171 \end{array}$	
His 423	-121	$133<$	$\begin{array}{r} -168 \\ 178 \end{array}$	
Asn 500	-54	$33-$	168	Last fitted residue

1 [residues $223,226(\mathrm{G}), 227$; and $86,103(\mathrm{G}), 104]$. While one of these bends has the usual associated type II tight turn, the other has a type II turn connecting the two β-strands involved in the β-bulge formation.

There is an unusual 6 -stranded anti-parallel structure formed between subunits involving the wrapping domain and amino-terminal arm. This is shown as a hydrogen-bonding diagram in Fig. 8. The aminoterminal arm of the standard 'red' subunit itself has been slipped through a loop, composed of residues 380-420 of the Q-related 'yellow' subunit.
(c) Temperature-factor variation and solvent accessibility

As in other proteins, catalase shows scasonable correlation between atomic temperature factors and molecular surface area. In Fig. 9 are shown graphs relating the average main-chain and side-chain temperature factors per residue with surface accessibility. The latter was determined with the Lee \& Richards (1971) algorithm. The exposed fraction of the total surface area (Fig. 7b) was normalized with respect to the accessible surface area of each residue X as found in a Gly-X-Gly tripeptide in the same conformation as in the native protein (Shrake \& Rupley,
1973). Although the greater surface flexibility (expressed as a 'temperature factor') in proteins has long been recognized, it has only occasionally been placed on a quantitative basis (Sheriff, Hendrickson, Stenkamp, Sieker \& Jensen, 1985).

The variation of mean temperature factor per residue with position in the polypeptide chain is shown in Fig. 10 for both main- and side-chain atoms. While the main-chain temperature factors vary relatively smoothly, there are far greater differences in mean side-chain temperature factors between successive residues. The highest temperature factors ($58.5 \AA^{2}$ for the main chain) occur for residues Ala 19Ala 20 -Gln 21 at the hinge between the aminoterminal arm helix α_{1} and the loop through which the arm is inserted in the Q-axis-related subunit. Possibly the arm requires this flexibility in order to form the 'knot'. Other regions of particularly high temperature factors are at the amino-terminal ($49.6 \AA^{2}$ main chain) and carboxy-terminal ($57.9 \AA^{2}$ main chain) regions where the first two and last six residues are entirely disordered. Other regions of high temperature factors are near the beginning of helix

(a)

(b)

Fig. 8. (a) Main-chain hydrogen bonding between subunits involves the wrapping domain and amino-terminal arm. (b) Color code for naming of subunits in the letramer.
$\alpha_{11}\left(\simeq 49 \cdot 0 \AA^{2}\right)$ and in the wrapping domain Met 391Met $394\left(\sim 37.6 \AA^{2}\right)$. Both these fragments are particularly accessible to water.

The most rigid parts of the molecule ($60-75,113-$ 117, 159-163, 324-326, 350-368) are found in the heme pocket ($8<B<10 \AA^{2}$ for main-chain atoms). The mean temperature factor of the heme groups themselves is only $17 \AA^{2}$ [see Fita \& Rossmann (1985b) for a discussion of the variation of the temperature factors of the heme atoms]. Indeed, a number of other enzymes have their most rigid portions near their active sites [e.g. papain (Kamphuis, Kalk,

Swarte \& Drenth, 1984) and penicillopepsin (James \& Sielecki, 1983; James, Hsu, Hofmann \& Sielecki, 1981)]. In contrast, the NADP binding pocket is far more flexible and the NADP molecule itself has a mean temperature factor of $50 \AA^{2}$ (Table 9). This is particularly surprising in light of its strong affinity to the catalase molecule (binding constant $<10^{-8} M$; Kirkman \& Gaetani, 1984). The O2' phosphate group has a particularly high temperature factor $\left(57 \cdot 1 \AA^{2}\right)$.

Residues have been divided into three groups according to their percentage normalized surface accessibility: those with more than 15% of their area

Fig. 9. Fractional accessibility surface areas for the main and side chains, respectively, of an isolated subunit (a, b) and the tetrameric catalase (c, d). Comparison with Fig. 10 shows the better correlation of the B-value distribution with the accessible surface in the tetramer.

Table 9. Temperature factors for the bound NADP molecule

Moiety
Nicotinamide
Nicotinamide ribose
Pyrophosphate
Adenine ribose
O^{1} phosphate
Adenine

accessible, those with between $15-2 \%$ accessible, and those with less than 2% accessible. Table 10 shows relative side-chain surface accessibility of the different kinds of residues and their variance. The results for catalase are very similar to those for penicillopepsin (James \& Sielecki, 1983). The main chain has 106 'fully' accessible residues and 112 partially accessible residues. Their position (Fig. 7b) correlates with absence of observed main-chain hydrogen bonds, suggesting that most of these residues may interact with non-detected water molecules.

(d) Side-chain and solvent interactions

Table 11 lists all possible hydrogen bonds between main-chain and side-chain atoms. Within one subunit, there are 48 such bonds with respect to mainchain amino nitrogens and 80 such bonds with main-chain carbonyls. There are 5 and 13 possible hydrogen bonds, respectively, from the main chain of one subunit to all other subunits. The main-chain to side-chain hydrogen bonds are divided between the 3 possible interfaces, generated by the P, Q and R axes, in the ratio $1: 6: 11$, respectively. A total of 43% of the main-chain carbonyls were involved in

Table 10. Side-chain accessibility

Residue	Number	Number accessible	Number partially accessible	Number inaccessible	Per cent inaccessible
Ala	35	7	7	20	57^{*}
Cys	4	1	-	3	75
Asp	39	19	11	9	23
Glu	25	16	4	3	12^{*}
Phe	31	3	10	18	58
His	21	10	5	5	24^{*}
Ile	18	4	1	13	72
Lys	27	14	4	5	19^{*}
Leu	35	6	6	23	66
Met	10	1	2	7	70
Asn	30	8	14	7	23^{*}
Pro	38	11	11	15	39^{*}
Gln	21	9	7	5	23
Arg	31	18	6	7	22
Ser	25	12	4	9	36
Thr	22	6	9	7	31
Val	34	7	10	17	50
Trp	6	-	1	5	83
Tyr	20	7	6	7	35

* Residues 1-2 and 501-506, not included in the model, were considered accessible in this calculation
main-chain interactions and 20% in other interactions, while the main-chain amino groups had 45% and 13% such interactions, respectively. Baker \& Hubbard (1984) report that average values for other proteins are 46% and 11% for carbonyls and 68% and 11% for amino nitrogens.

Each heme group makes 7 hydrogen bonds with the tetramer (all within the same subunit) and interacts with two to four water molecules. Each NADP molecule makes 12 hydrogen bonds within a subunit and interacts with two water molecules. A total of 49 solvent molecules per subunit were introduced, representing only a small fraction of all the water molecules in the cell. Their average temperature factor was $22 \AA^{2}$, ranging from 3 to $45 \AA^{2}$. Of these, 20

Fig. 10. Variation of mean temperature factor per residue along the polypeptide chain. (a) Main chain, (b) side chain. Shown also are the secondary structural elements, the residues involved in forming the heme pocket (H) and those which bind the NADP moiety (N).
form hydrogen bonds with main-chain amino nitrogens and 41 with main-chain carbonyls. Their disposition with respect to a subunit is shown in Fig. 11, while Table 12 counts the number of protein and water ligands for each water molecule. Of particular interest was one water molecule (identified as W52 with P, Q, R coordinates $19 \cdot 6,4 \cdot 3,28 \cdot 3 \AA$). It had a temperature factor of $19 \AA^{2}$ and was associated with especially bulky density. It is positioned on the heme's distal side, near Asn 147, and at the entrance to the possible secondary heme channel (Fita \& Rossmann, 1985b).
Possible ionic interactions, defined as distances less than $3 \cdot 8 \AA$ between groups that are probably charged at neutral pH (Arg, Lys, Glu, Asp), are listed in Table 13. There were 29 probable salt bridges (or 30 if the Arg 353 interaction with the essential tyrosine 357 is counted) within a subunit and 7 between subunits. The intersubunit salt bridges involve 6 arginines and 6 aspartic acids but only 1 glutamic acid and no lysines. Ionic subunit interactions in southern bean mosaic virus are also dominated by arginines (Rossmann, Abad-Zapatero, Hermodson \& Erickson, 1983). Of some concern are residues Arg 387 and Lys 232 which are completely buried and apparently not neutralized directly by any other residues, although they are in polar environments.

(e) Tertiary and quaternary structure analysis

The tertiary and quaternary structure has been outlined previously (Murthy et al., 1981). Our aim here is to examine the relationship between secondary structural elements in a quantitative manner. The area of contact between any pair of secondary structural elements was examined by determining the reduction of surface area for the free elements when positioned in the molecule, using the Lee \& Richards (1971) algorithm with a probe radius of $0.75 \AA$. The surface
area concealed to the probe will be slightly different for each of two secondary structural elements. Hence, the average value of these two determinations was used. Finally, a distinction can be made between carbon and non-carbon atoms made inaccessible by contact between two secondary structural elements. The carbon-atom area can be considered as a function of the hydrophobic van der Waals interactions. These calculations can be represented as a matrix where the matrix elements represent interactions between any two secondary structural elements. The matrix can be extended by including the prosthetic heme and NADP groups (Table 14).

Analysis of the matrix for one subunit of catalase shows in a quantitative manner that (i) the aminoterminal arm is bound only weakly to its own subunit by way of small interactions between α_{1} and α_{7} and the primarily hydrophobic contact of α_{2} with α_{8}; (ii) while there is extensive contact between the adjacent strands of the β-barrel, the contact area between β_{4} and β_{5} is much less; (iii) there are seven α-helices ($\alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{10}, \alpha_{11}, \alpha_{12}, \alpha_{13}$) which form a cluster; and (iv) NADP is in contact with $\alpha_{5}, \beta_{5}, \beta_{6}, \beta_{7}$ and α_{10} and the heme group with $\beta_{2}, \beta_{3}, \beta_{4}, \alpha_{3}, \beta_{5}, \alpha_{8}$ and α_{9}.

A similar analysis can be made for the interactions between secondary structural elements in different subunits. These results are summarized in Tables 15 and 16. By far the smallest subunit surface contact area is between ' P-related' dimers (that is, between dimers which themselves still contain subunits related by the P axis), while the Q - and R-related dimer contact surfaces are roughly equal. The P-related dimer contact surface is also dependent on a larger percentage of polar interactions. The wrapping domain provides the largest area of contact for subunit interactions, particularly for the Q-related dimers. The amino-terminal arm also provides a large amount of contact especially for R-related dimers.

Fig. 11. Disposition of the water molecules that had definitely been located during the refinement around one subunit.

Table 11. Main-chain-side-chain hydrogen bonds
(a) Main chain as H donors within a subunit

Donor		Acceptor		Distance
Atom	Residue	Atom	Residue	(\AA)
N	Ala 7	OD1	Asn 266	2.8
N	Gly 29	OD1	Asp 58	$3 \cdot 1$
N	Gly 30	OG1	Thr 28	$3 \cdot 3$
N	Len 38	OD2	Asp 36	3-2
N	Leu 41	OD1	Asp 53	$2 \cdot 7$
N	Phe 56	OD2	Asp 53	$3 \cdot 2$
N	Val 115	OD1	Asp 127	2.8
N	Ala 116	OD1	Asp 127	2.8
N	Ser 119	OE1	Glu 70	2.7
N	Arg 129	OD1	Asn 148	2.8
N	Asp 139	OG1	Thr 137	2.6
N	lle 151	OG1	Thr 149	3.0
N	Leu 158	OD2	Asp 156	$3 \cdot 2$
N	Gln 172	OD1	Asn 170	2.7
N	Thr 173	OD1	Asn 170	$3 \cdot 1$
N	Asp 179	OD1	Asp 177	$3 \cdot 1$
N	Arg 202	OG	Ser 200	$3 \cdot 3$
N	Asp 225	OD1	Asn 223	2.6
N	Gly 226	OD1	Asn 223	$3 \cdot 1$
N	Glu 227	OD1	Asn 223	$3 \cdot 1$
N	Thr 237	ODI	Asp 212	3.0
N	Glu 239	OG1	Thr 237	$3 \cdot 1$
N	Asp 248	OG	Ser 245	$3 \cdot 1$
N	Gly 260	OD2	Asp 123	2.8
N	Leu 261	OD2	Asp 123	$3 \cdot 2$
N	Ser 275	OE1	Gln 239	$2 \cdot 4$
N	Thr 284	OE2	Glu 287	$3 \cdot 1$
N	Phe 296	OD1	Asn 294	2.9
N	Leu 298	OD2	Asp 297	$3 \cdot 1$
N	Thr 299	OD2	Asp 297	3.0
N	Val 301	OE1	Gln 441	$2 \cdot 9$
N	Asn 323	OE2	Glu 327	$3 \cdot 2$
N	Ala 326	OD1	Asn 323	$3 \cdot 3$
N	Ala 332	OD1	Asn 375	$2 \cdot 9$
N	Met 349	OD1	Asp 347	$3 \cdot 1$
N	Gln 386	OD1	Asn 384	2.8
N	Met 393	OE1	Gln 371	2.7
N	Tyr 403	OEI	Asn 402	3.2
N	Phe 408	ODI	Asn 406	2.6
N	His 413	OH	Tyr 404	$3 \cdot 2$
N	His 420	OE1	Glu 343	$2 \cdot 7$
N	Ala 434	OD1	Asn 432	$3 \cdot 2$
N	Asn 438	OD2	Asp 437	2.9
N	Val 439	OD2	Asp 437	2.9
N	Asn 451	OE1	Gln 454	3.0
N	Glu 453	OD1	Asn 451	2.8
N	Gln 454	OD1	Asn 451	3.0
N	Gln 470	OD2	Asp 179	$3 \cdot 2$

(b) Main chain as acceptor

Acceptor		Donor	
Atom	Residue	Atom	Residue
0	Thr 28	OG1	Thr 27
0	Gly 44	OG1	Thr 42
0	Gly 140	OG1	Thr 137
0	Arg 209	OG1	Thr 237
0	Pro 295	OGI	Thr 218
0	Gly 240	OG1	Thr 237
0	Asn 266	OG1	Thr 270
0	Ala 267	OG1	Thr 270
0	Thr 114	OG	Ser 113
0	Glu 118	OG	Ser 121
0	Pbe 163	OG	Ser 166
0	Trp 182	OG	Ser 186
0	Asp 183	OG	Ser 186
\bigcirc	Arg 188	OG	Ser 191
0	Leu 192	OG	Ser 196
0	Phe 197	OG	Ser 200
0	Thr 149	OG	Ser 216
0	Thr 218	OG	Ser 345
0	Val 478	OG	Ser 482
0	Pro 486	OG	Ser 490
0	Ser 433	NE	Arg 155
0	His 174	NH1	Arg 169
0	Arg 209	NE2	Gln 239
0	Ser 275	NE2	Gln 239
0	Trp 302	NE2	Gln 281
0	тут 307	NE2	Gln 281
0	Ser 345	NE2	Gln 351

(b) (cont.)

Acceptor		Donor		Distance (A)
Atom	Recidue	Atom	Residue	
0	Val 145	NH2	Arg 353	$3 \cdot 1$
0	Glu 329	NH2	Arg 364	$3 \cdot 3$
0	Pro 390	ND2	Ass 368	2.7
0	Gin 330	ND2	Asn 375	2.7
0	Tyr 369	ND2	Asn 375	$3 \cdot 2$
0	Asn 384	NH2	Arg 387	$3 \cdot 2$
0	Ala 400	NH2	Arg 387	$3 \cdot 4$
0	Gln 386	NH 1	Arg 387	$2 \cdot 5$
0	Tyr 403	ND2	Ass 406	$3 \cdot 2$
0	Asp 436	ND2	Ass 438	2.9
0	Ala 434	ND2	Asn 438	3.0
0	Val 301	NE2	Gln 441	2.8
0	Val 484	NE	Arg 443	$3 \cdot 1$
0	Leu 447	NH2	Arg 455	3.0
-	Leu 450	NH2	Arg 455	$2 \cdot 9$
-	Asn 451	NH2	Arg 455	3.0
0	Asn 451	NH1	Arg 455	$3 \cdot 2$
0	Tyr 446	NE	Arg 455	2.6
0	Leu 450	NE	Arg 455	3.4
-	Lys 37	NZ	Lys 37	2.8
0	Val 72	NZ	Lys 168	$3 \cdot 4$
0	Lys 97	NZ	Lys 104	2.9
0	Ala 116	NZ	Lys 168	2.8
0	Ser 121	NZ	Lys 76	3.5
0	Ser 186	NZ	Lys 476	$2 \cdot 3$
0	Ser 216	NZ	Lys 232	2.9
0	Lys 300	NZ	Lys 232	$3 \cdot 2$
0	Ala 332	NZ	Lys 134	$3 \cdot 3$
0	Ser 416	NZ	Lys 95	$3 \cdot 3$
0	Phe 431	NZ	Lys 348	$3 \cdot 3$
0	Asp 437	NZ	Lys 300	2.5
0	Gly 464	NZ	Lys 467	$3 \cdot 1$
0	Ser 8	NH1	Arg 4	3.0
0	Arg 18	NE2	Gln 21	$2 \cdot 3$
0	Ala 61	NH1	Arg 65	3.1
0	Val 328	NH2	Arg 71	$3 \cdot 3$
0	Leu 331	NH2	Arg 71	2.6
0	Glu 329	NH1	Arg 71	2.7
0	His 74	NH2	Arg 111	$2 \cdot 2$
0	Ser 200	NH1	Arg 126	$3 \cdot 3$
0	Leu 178	NE	Arg 126	2.9
0	Asp 123	NH2	Arg 129	2.9
0	Val 125	NH2	Arg 129	2.5
0	Val 125	NH1	Arg 129	2.5
0	Asp 127	NH1	Arg 129	2.8
0	Ser 433	NH2	Arg 155	3.3
0	Gly 77	OH	Tyr 324	$2 \cdot 2$
o	Phe 131	OH	Tyr 235	2.9
0	Val 374	OH	Tyr 136	$2 \cdot 6$
0	Pro 411	OH	Tyt 385	$2 \cdot 2$
\bigcirc	Asn 451	NE	Arg 455	3.0
0	Phe 199	ND2	Asn 461	2.9
0	Ala 469	NE2	Gln 474	$3 \cdot 2$

(c) Main chain as H donor

Donor		Acceptor		Distance
Atom	Residue	Atom	Residue	(\AA)
N	Ser 40	OD1	Asp 156 (R)	2.7
N	Leu 49	OE1	Gln $351(R)$	$3 \cdot 4$
N	Val 322	OE1	Gln $172(R)$	3.4
N	Ala 383	OG1	Thr 27 (Q)	3.4
N	Cys 392	OE1	Gln 330 (Q)	$3 \cdot 2$
N	Ser 407	OD2	Asp 183 (P)	2.7

(d) Main chain as H acceptor

Acceptor		Donor		Distance
Atom	Residue	Atom	Residue	(\AA)
0	Asp 139	ND2	Asn $32(Q)$	$2 \cdot 9$
0	Asn 141	ND2	Asn $32(Q)$	2.9
0	Gly 398	ND2	Asn 323 (Q)	$2 \cdot 6$
0	Gln 397	NE2	Gin 10 (Q)	2.8
0	Asp 36	NE	Arg 430 (R)	3.4
0	Asn 39	NE	Arg 430 (R)	2.9
o	Asp 64	OG1	Thr $360(R)$	$2 \cdot 7$
-	Val 72	NH2	Arg 67 (R)	2.8
0	Leu 158	NZ	Lys 37 (R)	$3 \cdot 2$
0	Pro 321	NE2	Gln 172 (R)	$2 \cdot 4$
0	Phe 431	ND2	Asn 39 (R)	$2 \cdot 7$
0	Asp 468	NH2	Arg 4 (R)	$3 \cdot 3$

Table 12. Interaction of water molecules

The table shows the number of water molecules with different types of hydrogen bonding interactions.

Table 13. Ionic interactions

Positive	Negative	Positive	Negative
Lys 12	Asp 9	Arg 111	Heme
Lys 37	Glu 59	Arg 155	Asp 438, Asp 297
Lys 76	Asp 123, Asp 258	Arg 169	Glu 118, Asp 258 (R)
Lys 97	Asp 139	Arg 188	Glu 190
Lys 104	Glu 100, Glu 138	Arg 202	NADP
Lys 134	Asp 143	Arg 209	Asp 263
Lys 236	NADP	Arg 251	Asp 248
Lys 300	Asp 297	Arg 262	Asp 5, Asp 256
Lys 314	Asp 238	Arg 353	Tyr 357 (deprotonated?)
Lys 456	Glu 453	Arg 364	Glu 329, Heme
Lys 467	Asp 468	Arg 381	Asp 24 (Q)
		Arg 421	Asp 427 (P)
Arg 4	Asp 9, Asp 179 (R)	Arg 430	Asp 53 (R), Glu 419 (P)
Arg 65	Asp 359 (R)	Arg 455	Glu 452
Arg 67	Glu 66	Arg 457	Asp 201, Glu 453
Arg 71	Glu 329, Heme	Arg 491	Glu 452, Glu 487

Thus, the most flexible portions of the molecule are responsible for most of the quaternary structural interactions.

Included in Table 15 are the non-secondary structural elements. These were not included in the intra-subunit interactions (Table 14) on account of the end effects which relate to the surface area between adjacent elements and thus represent covalent interactions. However, these non-secondary structural elements can be introduced in considering intersubunit contacts without any such problems and are seen to contribute significantly (Table 15) to the interactions.

(f) Crystal packing

In order to describe the molecular contacts in the crystal, the reference molecule will be considered to be positioned at $0, y_{0}, \frac{5}{6}$. Subunit 1 has its Fe atom such that all its P, Q, R coordinates are positive, while the crystallographically different subunit 2 has its Fe atom at $P, Q, R(-16 \cdot 9,3 \cdot 4,-15 \cdot 2)$. Three different molecular interfaces can then be described (Table 17). The tetramer itself, therefore, contains a total of 6 different molecular contacts since each of the three types of interfaces will occur twice (Fig. 12).

Interface 1 involves at least five well defined hydrogen bonds; interface 2 involves primarily weak hydrophobic interactions and only two possible hydrogen bonds; and interface 3 has at least five hydrogen bonds, ionic interactions and larger hydrophobic contacts. No water molecules have been found in the space between the molecules in the contact region. This may, however, merely reflect the absence of well characterized water molecules. As observed earlier (Table 5), the molecular contact regions also correspond to maximum departure from non-crystallo-

Table 14. Interactions between secondary structural elements

[^2] of carbon atoms to non-carbon atoms in contact. The diagonal gives the total area of secondary structural elements.

Table 15. Area of contact $\left(\AA^{2}\right)$ of the secondary elements in one subunit of BLC with, respectively, the P, Q, R molecular symmetry related subunits

Element	Residue (initialfinal)	P-related		Target subunit Q-related		\boldsymbol{R}-related	
		Total	$C / \neq C$	Total	C/ $\neq \mathrm{C}$	Total	$C / \neq C$
α_{1}	5-18		-	220	4.5	115	1.5
α_{2}	55-66	10	0	228	$2 \cdot 0$	447	$2 \cdot 0$
β_{1}	76-87				-		-
β_{2}	103-114		-		-		-
β_{3}	129-137		-		-		-
β_{4}	140-148		-	42	1.3		-
α_{3}	159-168	119	1.6		-	149	7.3
α_{4}	177-187	159	1.9		-	36	0.7
α_{5}	188-200	16	∞		-	12	0.1
β_{5}	213-223		\cdots		-		-
β_{6}	226-238		-		-		-
α_{6}	246-256		-		-	68	$2 \cdot 5$
α_{7}	258-271				-	119	$3 \cdot 2$
β_{7}	274-283		-		-		-
$\boldsymbol{\alpha}_{7}$.	284-291		-		-		-
β_{8}	310-319		-		-		-
α_{8}	323-331		-	141	1.8	71	$3 \cdot 2$
α_{9}	347-366	20	$5 \cdot 7$	128	$1 \cdot 1$	276	$2 \cdot 0$
${ }^{\boldsymbol{w}}$	369-419	397	1.5	1292	1.8		-
β_{9}	422-429	287	0.7	15	0.7	155	$2 \cdot 3$
${ }^{10}$	439-449		-		-		-
α_{11}	452-469		-		-	13	1.0
a_{12}	470-484	44	$3 \cdot 8$		-	43	1.3
α_{13}	485-500		-		-		-
Non-secon	structural	295	$3 \cdot 0$	1062	1.7	1733	1.5

elements
Note: $\mathrm{C} / \neq \mathrm{C}$ is the ratio of carbon atom area to non-carbon atom area that is in contact with the neighboring subunit. This ratio is, therefore, larger for hydrophobic contacts.
graphic symmetry. The contact area III (Table 17) is not possible in PVC as this area is covered by the additional 'flavodoxin-like' domain (Vainshtein et al., 1986).

We are grateful to Sharon Wilder, Kathy Shuster and Bill Boyle for assistance in the preparation of this manuscript, as well as to Cele Abad-Zapatero and Jiliang Chiu for helpful discussions. The work was supported by National Institutes of Health grant No. GM 10704 and National Science Foundation grant No. PCM82-07747.

Fig. 12. Diagrammatic representation of molecular contacts in the crystal. The origins of the $P, Q, R, P^{\prime}, Q^{\prime}, R^{\prime}$ and $P^{\prime \prime}, Q^{\prime \prime}, R^{\prime \prime}$ molecular axial systems are located, respectively, at ($0, y_{0}, \frac{5}{6}$), ($y_{0}-1,0, \frac{7}{6}$) and $\left(-y_{0}, 1-y_{0}, \frac{1}{2}\right)$.

Table 16. Total area of contact $\left(\AA^{2}\right)$

Between dimers	Total area	$\mathrm{C} / \neq \mathrm{C}$
containing the:	1300	1.6
P axis	3100	1.8
Q axis	3200	1.8

Note: $C / \neq C$ has the same significance as in Table 15.

Table 17. Crystal contacts between different molecules

Agarwal, R. C. (1978). Acta Cryst. A34, 791-809.
Baker, E. N. \& Hubbard, R. E. (1984). Prog. Biophys. Mol. Biol. 44, 97-179.
Barry, C. D., Bosshard, H. E., Ellis, R. A. \& Marshall, G. R. (1975). Computers in Life Science Research, edited by W. Siler \& D. A. B. Lindberg, pp. 137-147. New York: Plenum.
Brant, D. A. \& Schimmel, P. R. (1967). Proc. Natl Acad. Sci. USA, 58, 428-435.
Deisseroth, A. \& Dounce, A. L. (1970). Physiol. Rev. 50, 319-375.
Eventoff, W., Tanaka, N. \& Rossmann, M. G. (1976). J. Mol. Biol. 103, 799-801.
Fita, I. \& Rossmann, M. G. (1985a). Proc. Natl Acad. Sci. USA, 82, 1604-1608.
Fita, I. \& Rossmann, M. G. (1985b). J. Mol Biol. 185, 21-37.
Forsyth, J. B. \& Wells, M. (1959). Acta Cryst. 12, 412-415.
Hamilton, W. C. (1964). Statistics in Physical Sciences, pp. $157-$ 162. New York: Ronald Press.

Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
Hendrickson, W. A. \& Konnert, J. H. (1980). Computing in Crystallography, edited by R. Diamond, S. Ramaseshan \& K. Venkatesan, pp. 13.01-13.26. Bangalore: Indian Academy of Sciences.
James, M. N. G., Hsu, I. N., Hofmann, T. \& Sielecki, A. R. (1981). Siructural Studies on Molecules of Biological Interest, edited by G. DODSON, J. P. Glusker \& D. SAYRE, pp. 350-389. Oxford: Clarendon Press.
James, M. N. G. \& Sielecki, A. R. (1983). J. Mol. Biol. 163, 299-361.
Johnson, J. E. (1978). Acta Cryst. B34, 576-577.
Jonf.s, T. A. (1978). J. Appl. Crust. 11, 268-272.

Kamphuis, l. G., Kalk, K. H., Swarte, M. B. A. \& Drenth, J. (1984). J. Mol. Biol. 179, 233-256.

Kirkman, H. N. \& Gaetani, G. F. (1984). Proc. Narl Acad. Sci. USA, 81, 4343-4348.
Konnert, J. H. \& Hendrickson, W. A. (1980). Acta Cryst. A36, 344-350.
Lee, B. \& Richards, F. M. (1971). J. Mol. Biol. 55, 379-400.
Murthy, M. R. N., Reid, T. J. III, Sicignano, A., Tanaka, N. \& Rossmann, M. G. (1981). J. Mol. Biol. 152, 465-499.

Newcomer, M. E., Jones, T. A., Åqvist, J., Sundelin, J., Eriksson, U., Rask, L. \& Peterson, P. A. (1984). EMBO J. 3, 1451-1454.
Rao, S. T. \& Rossmann, M. G. (1973). J. Mol. Biol. 76, 241-256.
Reid, T. J. III, Murthy, M. R. N., Sicignano, A., Tanaka, N., Musick, W. D. L. \& Rossmann, M. G. (1981). Proc. Nal Acad. Sci. USA, 78, 4767-4771.
Richardson, J. S., Getzoff, E. D. \& Richardson, D. C. (1978). Proc. Natl Acad. Sci. USA, 75, 2574-2578.

Rossmann, M. G. (1976). Acta Cryst. A32, 774-777.
Rossmann, M. G., Abad-Zapatero, C., Hermodson, M. A. \& Erickson. J. W. (1983). J. Mol. Biol. 166, 37-83.
Rossmann, M. G. \& Argios, P. (1975). J. Biol. Chem. 250, 7525-7532.

Schonbaum, G. R. \& Chance, B. (1976). The Enzymes, Vol. XIII, edited by P. D. Boyer, 3rd ed., pp. 363-408. New York: Academic Press.
Schroeder, W. A., Shelton, J. R., Shelton, J. B., Apell, G., Evans, L., Bonaventura, J. \& Fang, R. S. (1982). Arch. Biochem. Biophys. 214, 422-424.
Schroeder, W. A., Shelton, J. R., Shelton, J. B., Robberson, B., Apell, G., Fang, R. S. \& Bonaventura, J. (1982). Arch. Biochem. Biophys. 214, 397-421.
Sheriff, S., Hendrickson, W. A., Stenkamp, R. E., Sieker, L. C. \& Jensen, L. H. (1985). Proc. Natl Acad. Sci. USA, 82, 1104-1107.
Shrake, A. \& Rupley, J. A. (1973). J. Mol. Biol. 79, 351-371.
Tfin Eyčk, L. F. (1973). Acta (ryst. A29, 183-191.
Ti v Eyck, L. F. (1977). Acta Crvst. A33, 486-492.
Vainshtein, B. K., Melik-Adamyan, W. R., Barynin, V. V., Vagin, A. A. \& Grebenko, A. I. (1981). Nature (London), 293, 411-412.
Vainshtein, B. K., Melik-Adamyan, W. R., Barynin, V. V., Vagin, A. A., Grebenko, A. I., Borisov, V. V., Bartels, K. S., Fita, I. \& Rossmann, M. G. (1986). J. Mol. Biol. 188, 49-61.

Acta Cryst. (1986). B42, 515-522

A Systematic Pairwise Comparison of Geometric Parameters Obtained by X-ray and Neutron Diffraction

By Frank H. Allen
Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England

(Received 11 November 1985; accepted 24 March 1986)

Abstract

The effects of X-ray atomic asphericity on derived molecular geometry have been examined for ten common substructures involving $\mathrm{C}, \mathrm{N}, \mathrm{O}$. The Cambridge Structural Database has been used to locate pairs of X-ray (X) and neutron (N) structure determinations of the same compound. Rigid criteria based on experimental temperature, refinement procedures, crystalline form and precision have been applied in selecting suitable X, N structure pairs. Corresponding X and N values for derived parameters have been paired for 46 chemically unique subsets (39 bond-length sets and 7 valence-angle sets). The statistical significance of the distribution of $X-N$ differences $\left(D_{i}\right)$ has been assessed in each case via a Wilcoxon matched-pairs signed-ranks test. The signed magnitude of the mean difference (\bar{D}) is large, as expected, for bonds to H, ranging from -0.096 (7) \AA for $\mathrm{C}-\mathrm{H}$ to $-0.155(10) \AA$ for $\mathrm{O}-\mathrm{H}$. Some highly significant differences are also observed for bonds involving $\mathrm{C}, \mathrm{N}, \mathrm{O}$ alone. Representative \bar{D} values (\AA) are -0.0096 (9) for $C=C$ (ethylenic), $-0 \cdot 0052(9)$ for $\mathrm{C} \cdots \mathrm{C}$ (benzenoid), -0.0078 (16) for $\mathrm{C} \equiv \mathrm{N},+0 \cdot 0035$ (12) for $\mathrm{C}-\mathrm{OH}$ (carboxyl), +0.0046 (10) for $\mathrm{N}=\mathrm{O}$ (nitro), +0.0054 (8)

for $\mathrm{C}-\mathrm{O}$ (carbohydrate) and $+0 \cdot 0082$ (21) for $\mathrm{C}-\mathrm{C}$ $(\mathrm{C}-\mathrm{C} \equiv \mathrm{N})$; the significance of the D_{i} distribution for $\mathrm{C}=\mathrm{O}$ (keto) was marginal. No significant differences were observed for $\mathrm{C}=\mathrm{O}\left(\mathrm{COOH}\right.$ and $\left.\mathrm{COO}^{-}\right)$, nor for any of the valence angles tested. Some implications for the combination or comparison of structural results obtained from different techniques are noted.

Introduction

It is well known that the spherically symmetric atomic charge density distribution around H is subject to a relatively large distortion on formation of a bond $A-H$ (Stewart, Davidson \& Simpson, 1965). The H position obtained from X-ray data (X) with normal spherical scattering factors is displaced towards A along the bond vector when compared with H positions obtained from neutron data (N). Thus the mean $X-N$ shifts for $\mathrm{C}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ in sucrose are -0.13 (1) and $-0.18(1) \AA$, respectively (Hanson, Sieker \& Jensen, 1973).

Measurable asphericity shifts are not, however, restricted to H (see for example Dawson, 1964). A significant $X-N$ positional shift of $\mathrm{O}(\mathrm{H})$ in oxalic

[^0]: * Present address: Departamento de Quimica Macromolecular, ETSIIB, Diagonal 647, 08028 Barcelona-28, Spain.
 \dagger Present address: Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC No. 67, 1900 La Plata, Argentina.
 \ddagger Present address: Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.

[^1]: * Atomic coordinates and structure factors have been deposited with the Protein Data Bank, Brookhaven National Laboratory (References 7CAT, 8CAT and R1CATSF), and are available in machine-readable form from the Protein Data Bank at Brookhaven or one of the affiliated centers at Melbourne or Osaka. The data have also been deposited with the British Library Lending Division as Supplementary Publication No. SUP 37017 (5 microfiche). Free copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: This matrix shows areas (\mathcal{A}^{2}) in contact between two structural elements as determined by a probe atom of $1.5 \AA$ diameter. The top half of the matrix gives total areas. The bottom half of the matrix gives the ratio

